123 research outputs found

    Surface aided polarization reversal in small ferroelectric particles

    Get PDF
    Author name used in this publication: H. L. W. ChanAuthor name used in this publication: F. G. Shin2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Thickness dependence of spin wave excitations in an artificial square spin ice-like geometry

    Get PDF
    We present a comparative study of the spin wave properties in two magnetic films patterned into an artificial square spin ice-like geometry. The array elements are rectangular islands with the same lateral dimensions but with different thicknesses: 10 nm and 30 nm. Using Brillouin light scattering, the frequencies of spin wave excitations were measured as a function of the magnetic field going from positive to negative saturation. We find substantial changes with thickness to spin wave mode frequencies and the number of detected modes. Frequencies of spin waves localized at element edges are observed to evolve non-monotonically with magnetic fields and soften at critical fields. These critical fields enable us to extract information of the magnetization reversal of individual islands within the array. Finally, we discuss the effects of separation between islands and examine the possibilities for dynamic coupling through the overlap of collective edge modes

    Brillouin light scattering study of magnetic-element normal modes in a square artificial spin ice geometry

    Get PDF
    We report the results, from experimental and micromagnetic studies, of the magnetic normal modes in artificial square spin ice systems consisting of ferromagnetic-monodomain islands. Spin wave properties are measured by Brillouin light scattering. The mode spectra contain several branches whose frequencies are sensitive to the magnitude and in-plane orientation of an applied magnetic field. We also identify soft modes that exhibit different behaviour depending on the direction of the applied magnetic field. The obtained results are well described with micromagnetic simulations of independent magnetic elements arranged along two sublattices

    Spin-orbit interaction enhancement in permalloy thin films by Pt doping

    Get PDF
    The spin-orbit interaction is an inherent part of magnetism, which links up the independent world of spins to the atomic lattice, thus controlling many functional properties of magnetic materials. In the widely used 3d transition metal ferromagnetic films, the spin-orbit interaction is relatively weak, due to low atomic number. Here we show that it is possible to enhance and tune the spin-orbit interaction by adding 5d platinum dopants into permalloy (Ni 81 Fe 19 ) thin films by a cosputtering technique. This is achieved without significant changes of the magnetic properties, due to the vicinity of Pt to meeting the Stoner criterion for the ferromagnetic state. The spin-orbit interaction is investigated by means of transport measurements (the anisotropic magnetoresistance and anomalous Hall effect), ferromagnetic resonance measurements to determine the Gilbert damping, as well as by measuring the x-ray magnetic circular dichroism at the L 3 and L 2 x-ray absorption edges to reveal the ratio of orbital to spin magnetic moments. It is shown that the effective spin-orbit interaction increases with Pt concentration within the 0%–10% Pt concentration range in a way that is consistent with theoretical expectations for all four measurements

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record. Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1,2 can lead to specific collective behaviour3, including emergent magnetic monopoles4,5, charge screening6,7 and transport8,9, as well as magnonic response10-12. Here, we demonstrate a spin-ice-based activematerial in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13,14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.Engineering and Physical Sciences Research Council (EPSRC)Royal Society (Government)University of St PoeltenEuropean Union Horizon 2020: Marie Sklodowska-Curie grantVienna Science and Technology FundSwiss National Science Foundatio

    Heisenberg pseudo-exchange and emergent anisotropies in field-driven pinwheel artificial spin ice

    Get PDF
    Rotating all islands in square artificial spin ice (ASI) uniformly about their centers gives rise to the recently reported pinwheel ASI. At angles around 45∘, the antiferromagnetic ordering changes to ferromagnetic and the magnetic configurations of the system exhibit near degeneracy, making it particularly sensitive to small perturbations. We investigate through micromagnetic modeling the influence of dipolar fields produced by physically extended islands in field-driven magnetization processes in pinwheel arrays and compare the results to hysteresis experiments performed in situ using Lorentz transmission electron microscopy. We find that magnetization end states induce a Heisenberg pseudoexchange interaction that governs both the interisland coupling and the resultant array reversal process. Symmetry reduction gives rise to anisotropies and array-corner mediated avalanche reversals through a cascade of nearest-neighbor (NN) islands. The symmetries of the anisotropy axes are related to those of the geometrical array but are misaligned to the array axes as a result of the correlated interactions between neighboring islands. The NN dipolar coupling is reduced by decreasing the island size and, using this property, we track the transition from the strongly coupled regime towards the pure point dipole one and observe modification of the ferromagnetic array reversal process. Our results shed light on important aspects of the interactions in pinwheel ASI and demonstrate a mechanism by which their properties may be tuned for use in a range of fundamental research and spintronic applications

    Settling Decisions and Heterospecific Social Information Use in Shrikes

    Get PDF
    Animals often settle near competitors, a behavior known as social attraction, which belies standard habitat selection theory. Two hypotheses account for these observations: individuals obtain Allee benefits mediated by the physical presence of a competitor, or they use successfully settled individual as a source of information indicating the location of high quality habitat. We evaluated these hypotheses experimentally in two species of shrikes. These passerine birds with a raptor-like mode of life impale prey to create larders that serve as an indicator of male/habitat quality. Thus, two forms of indirect information are available in our system: a successfully settled shrike and its larder. Typically these two cues are associated with each other, however, our experimental treatment created an unnatural situation by disassociating them. We manipulated the presence of larders of great grey shrikes and examined the settling decisions of red-backed shrikes within and outside the great grey shrike territories. Male red-backed shrikes did not settle sooner on plots with great grey shrikes compared to plots that only contained artificial larders indicating that red-backed shrikes do not use the physical presence of a great grey shrike when making settling decisions which is inconsistent with the Allee effect hypothesis. In contrast, for all plots without great grey shrikes, red-backed shrikes settled, paired and laid clutches sooner on plots with larders compared to plots without larders. We conclude that red-backed shrikes use larders of great grey shrikes as a cue to rapidly assess habitat quality

    Superferromagnetism and Domain-Wall Topologies in Artificial “Pinwheel” Spin Ice

    Get PDF
    For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in “pinwheel” artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either one- or two-dimensional avalanches. This property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Magnetization dynamics of weakly interacting sub-100 nm square artificial spin ices

    Get PDF
    Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active. We have observed that they follow an Arrhenius-type Néel-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy computed with micromagnetic simulations
    corecore